Since 2004, supercomputer growth has been constrained by energy efficiency rather than raw hardware speeds. To maintain exponential growth of overall computing power, a massive growth in parallelisation is under way.
To keep up with these changes, computational fluid dynamics (CFD) must improve its strong scalability — its ability to handle lower cells-per-core ratios and achieve finer-grain parallelisation.
Scalability of Incompressible, Viscous CFD
Marin published a paper on this topic. In it, a maritime-focused, unstructured, finite-volume code (ReFRESCO) is used to investigate the scalability problems for incompressible, viscous CFD using two classical test-cases.
Existing research suggests that the linear equation-system solver is the main bottleneck to incompressible codes, due to the stiff Poisson pressure equation. In the paper, these results are expanded by analysing the reasons for this poor scalability.
Main Bottleneck without Solution
In particular, a number of alternative linear solvers and preconditioners are tested to determine if the scalability problem can be circumvented, including GMRES, Pipelined-GMRES, Flexible-GMRES and BCGS. Conventional block-wise preconditioners are tested, along with multi-grid preconditioners and smoothers in various configurations. Memory-bandwidth constraints and global communication patterns are found to be the main bottleneck, and no state-of-the-art solution techniques which solve the strong-scalability problem satisfactorily could be found.
There is significant incentive for more research and development in this area.